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Our main concern is with the development of a Slater-type orbital

(STO) multicenter molecular integral package for use with standard ab

initio quantum chemistry codes such as the Columbus code and Alchemy.

Significant advances have been made toward this goal, as shown by the

enclosed papers.

A new strategy has been adopted: First program all molecular

integrals in Mathematica (a computer algebra language that can give

arbitrary precision with our alpha-function method); then, using assured

accurate results as a guide, use FORTRAN to obtain speed and acceptable

accuracy. We believe that this dual thrust will finally crack the

"intractable" problem of STO multicenter integrals. Applications will soon

be made to real molecules.
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Lwdin Alpha-Function, Overlap Integral, and Computer Algebra

Herbert W. Jones
Physics Department
Florida A&M University
Tallahassee, Florida, 32307, U.S.A.

Abstract

A commerical computer algebra programme, Mathematica, is used to

generate the C matrix that characterizes our implementation of the Lwdin

alpha-function method as applied to Slater-type orbitals. An example of a

two-center overlap integral is done to show how the arbitrary precision capability

of Mathematica can overcome severe cancellation errors encountered with

programming in FORTRAN. This strategy is capable of being generalized to

other multicenter molecular integrals. Mathernatica programmes are included.
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Introduction

Efforts continue to be made to make Slater-type orbitals (STOs) a viable

alternative to Gaussian-type orbitals (GTOs) when dealing with problems of ab

initio chemistry [1]. The more physical nature of STOs should give advantages

over GTOs when working in structural chemistry and in studies of reaction

dynamics, and density functional theory [2]. Other investigators [3] have recently

made considerable progress in this essentially multicenter molecular integral

problem.

In this paper, we will initiate a new line of action that takes advantage of the

availability of commerical computer algebra programmes of evolving power and

flexibility. We will repeat our work on the Ildwdin alpha-function and, by an

example, show how overlap integrals may be computed to arbitrary accuracy.

The Alpha-Function and C, E, and F Matrices

The Lkdwdin a-function method expands displaced orbitals in an infinite

series of spherical harmonics about a single-center (the origin) before the

required integration is attempted [4]. The functional coefficients of the spherical

harmonics are designated as a-functions. We take a displaced STO to be centered

at (0,0,a) in its local coordinate system (R, E, 4), and write it in terms of the

original coordinate system (r,O, 4) [5,6]. Thus,

X = ARN-1 e- R yM (E, 0)
L

1/2 co1/2
X= A (2L +1) (L + M)! 4n (L +M)! (-1)M

N-l I4n ( L -M)! £M (2 t+1) (t - MA

X OCLM ( a, r) YM! ( 0, 0),

2



where
N+L+t N+ t

aNLM (a, r) = (2t+1) (t + M)A E CN LM (ij)
2(t +M)! i=O j=0

Hij (ca) i-t- (r) j-t -1

and

e-a [(-I e~r - e- r] , r<a

e-Cr [(-1)i eta - e-Ca] , r>a.

A = (2C)N+1I2 [(2N)! 1 /1'2 is the normalization factor, N, L, and M are the quantum

numbers of the orbital, and is the screening constant or orbital exponent. -,v,. *Z , L = .S -'c_ I , --- . . .. -. , - -

Most importantly for our developments the elements of the C matrix are

integers. Originally, it was obtained by programming the following expression,

using FORTRAN and a simple in-house version of computer algebra [7]:

[(L+M)/2] L+M-2p L+M-2p-q
Z CNLM (ij) ai ri = I E Y

i=O j=0 p=O q=O v=O

[(t -M)/2] t -M-2p' t -M-2p'-q' t t-k

p'=0 q'=0 v'=O k=O k'=O

ax rY (-1)v+q'+p+p'+L (2L-2p)! (2 t-2p')!
4L+ t +p-p' (L-p)! p! p'! q! q'! v! v'! (L+M-2p-q-v)

(N-L+2p+2q+2q')!

(t-p') (t -M-2p'-q'-v')! k' (N-L+2p+2q+2q'-k-k')

3



where

x = N + L + 2t-2p'- 2v'- 2v - k - k',

y= 2p' + 2v + 2v' + k',

and

t =N-L+ 2p +2q + 2q'

In Table I we use the programming language Mathematica [8] to generate the

polynomial in a and rfor the zeroth harmonic (t = 0) for the 2p orbital (N=2, L=1,

M=0). (Fo ur ex-amnple, we multiply by (-1)L so that the positive lobe will face

toward the origin [9]). This being accomplished, the next line selects the

coefficients of the polynomial to obtain the C matrix, whose elements are given by

[[ i+1, j+1]] which corresponds to our form C210 (ij). Our programming

notation conforms to Mathematica protocol and is chosen for ease in typing.

Thus, N=nn, L=hh, M=mm, t=h, p'=pp, q'=qp, v'=vp, k'=kp. Floor [ I means

reduce to integer. The curly brackets represent the eight summations and their

limits. One of the great advantages of Mathernatica is that its high level language

is remarkably analogous to standard mathematical notation.

Now that we have obtained the C matrix, we will next generate the E matrix

[10], which is a matrix of coefficients of the expansion of the a-function in a Taylor

series about r=0, that is, for the case ra. 0 In Table II we use two lines to type in
- LL kas bceri Li"tfe).

the definitions of the a-function, alpha. The Mathematica command Series [ ]

expands alpha in a Taylor series about r=0 to r5 . We again collect these

coefficients and print out the E matrix, e = E2 10 (ij). The F matrix may be
01

obtained by expanding the a-function for r>a in terms of a, in a similar manner
A4.

____ 
1 1 e ~Lo,.~ 'L-U-



Overlap Integral

We will find the value of an overlap integral given by Bhattacharrya and

Dhabal [11]. However, for convenience, our value will be positive to conform to the

convention of Mulliken, et al. [9]. The definition of the overlap integral is

,

S IXa Xbdv where

Xa =Aa rN'-1 e- 'r yM (0, ), and for the displaced orbital Xb= Ab RN-i e RYM (9, ,).

Expanding Xb, and invoking the) orthogonality of spherical harmonics, and

performing the radial integration we get [12]

N'4 1/2 N+ -L'P4 L'

S--K() L ,g:.L ti)(a)N 2 LL+I
I-C 1 -0

xe_- (  (- )×t\[(:-')]"" [ (C" + ) /)""

A 0 k ([a( - )' (-1)' ]

w here

, =N'-L'+1

and

K= - (2N')1(2Nn)(L'+M (L-A)! /

Table III shows the programming of the overlap formula. We have set N' nnp,

L'= hhp, K = kk. For clarity, the overlap formula is assembled from parts to get,

S = overlap. To compare with the literature [111, we set ' = 10, and = 2, and the

distance between orbits as 1.4. Then we let a ='(1.4) -14, b = C(1.4) = 2.8=

2(14/10). Mathematica can give arbitrary precision for arithmetic operations if it
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is given numbers as the ratio of integers. This applies also to roots and

exponentiations. The operation N[overlap, 20] means for Mathematica to try and

get 20 significant figures using the overlap formula. This it succeeds in doing as

confirmed by Bhattacharya and Dhabal [11]. With the command N[overlap, 30] we

request 30 digits, and get 29.

A more revealing set of parameters for this problem is a = 102/100 and b =

101/100. Now cancellation errors become evident. Thus N[overlap, 20] yields

0.4338568005, which is only 10 digits. Mathernatica trys not to return worthless

digits. The loss, we suspect, must be due to cancellation errors. This becomes

obvious if the positive parts and the negative parts of the overlap formula are

programmed separately for 20 digits. Then

overlap = 921614991.7515037098 - 921614991.3176469093 = .4338568005.

We may obtain 20 digits using the command N[overlap, 30], which gives

.43385680048834139559.

Hence, by the simple expedient of changing the number of digits requested we

may obtain arbitrary precision. Mathernatica can easily deal with large numbers

of digits, so that any physical system can be computed. (The exceptional case of

= ' (a = b) can be programmed separately from a simpler overlap formula [13]).

Conclusion

Recent investigators [11, 14, 15] working with overlap integrals have found

that more than one formulation is needed in order to cover the range of useful

parameter values and avoid intolerable cancellation errors. This is necesary

when using programmes that utilize a finite computer word length. In this

paper, it has been shown that by use of a variable word length, it is possible b

absorb cancellation errors and still work to a specified accuracy.

We have employed an Apple Macintosh lIx computer using the 1.2 version of

Mathematica. Benchmark values for overlap integrals have been achieved (in a

6



few seconds). Other multicenter molecular integrals are under investigation.

TtIe general usefulness of our methods for integral packages depends on newer

and faster versions of computer algebra schemes and the employment of

mainframes or workstations.
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nn=2;hh=l1;mm=O;h=O;

cpolynomial=Sum[a A (nn+hhl+2h-2pp-2vp-2v-k-kp)*
r A (2pp+2v+2vp+kcp) * (-1) A (v+qp+p+pp+hh) * (-1) Ahh*
(2hh-2p) I * (2h-2pp) 1/4A (hh+h-p-pp) / ( (hh-p)!
p! '*pp 1 *q! *qp I *v! *vp! *(hh+mm-2p-q-v)!1 ) *
(nn-hh+2p+2q+2qp) I / ( (h-pp) I *(h-mm-2pp-qp-vp) I
kp! * (nn-hh+2p+2q+2qp-k-kp) 1)
(p, 0, Floor [ (hh+mm) / 2] ) , (q, 0, hh+mm-2p1,
(v, 0, hhi+mm-2p-q) , {pp, 0, Floor [ (h-mm) /2])
(qp, 0, h-mm-2pp) , (vp, 0, h-mm-2pp-qp)
(k, 0, nn-hhi+2p+2q+2qp) ,
(kp, 0, nn-hh+2p 2q+2qp-k)]1

3 + 3 a + 2 a2 + a0 + 3 r + 3 ar + 2 a2 r + r2+ar

cmatrix=CoefflcientList [cpolynomial, (a,r) ]

c=cmatrix;

MatrixForm [c]

3 3 1

3 3 1

2 2 0

1 0 0

Table 1. Generation of the zeroth harmonic of the C matrix for the 2p orbital
starting with the C matrix polynomial.



alpha=Sum [c [ [i4i, j+ 1 ] ] * ((-1) A j*Exp [r] - Exp [-r] ) * ai*

q# rA (-h-i), i, 0, nn+hh+h} , U, 0, nn+h)];

alpha=(2h+1) * (h-mm) ! / (2* (h+mm) ! ) *alpha ;

alphae=Series [alpha, (r,0,5) ] ;

e=CoefficientList [alphae, {r,a} I

MatrixForm [el

0 0 0 1

0 0 0 0

0 0 -2/3 116

0 0 0 0

1/15 1/15 -1/15 1/120

Table II. Generation of the zeroth harmonic of the E matrix for the 2p
orbital. The alpha function polynomial is expanded in a
Taylor series in r, and the coefficients are collected in matrix
form.



nnp=l; hhp=0;

a=14; b=2* (14/10);

kk=2 A (nnp+nn) * (-1) A mm*Sqrt [(2hh+1) *(2hhp+l) *(hh+mi)! I
(hhp-mm)! / ((2nnp)! I (2nn) I* (I'hp~nirin) I * (hh-mn) I)

sl=Sum [ (nnp-hhp+j) ! *c [i+1, j+1]] *bA (nnp-2hhp-hh+i+j)
((-1) Aj / (a-b) " (nnp-hhp+j+1) -1 / (a+b) A (nnp-hhp+j+1)),
(i, 0, nn+hh+hhp) , Uj, 0, nn+hhp) I ;

s2=Sum [(nnp-hihp+j)!1 *c [[i+1, j+1]] *b A (nnp-2hhp-hh+i+j)I
(nnp-hhp+j-k)!I * ((-1) A / (a+b) A (k+1) - (1) Aj / (a-b) A (k+1)),
(i, 0, nn+hh+hihpl U 0, nn+hhp) ,(k, 0, n-hhp+j)]

s12=Exp [-b] * sl+Exp [-a] *s2

overlap~kk* (a/b) A (nnp+1/2) * s12;

N [overlap, 20]

0.11741378968662828485

N [overlap, 30]

0.11741378968662828485490731401

Table Ill. The implementation of the overlap formula to find S(is, 2p). The is
orbital has a screening constant of 10, and the 2p orbital has a
screening constant of 2. The orbitals have a 1.4 unit separation.
Mat hematica is requested to produce a 20 digit result and a 30 digit
result.



Benchmark values for two-center Coulomb integrals over Slater-type orbitals

Herbert W. Jones
Department of Physics and

Institute for Molecular Computations
Florida A&M University
Tallahassee, FL 32307

Abstract

The L'wdin alpha-function method, in which displaced orbitals are

expanded in an infinite series of spherical harmonics, is implemented for

Slater-type orbitals using a commerical computer algebra program,

Mathenatica. The program, which is included, generates a C matrix with

integer elements that characterizes our approach to multicenter molecular

integrals. The general two-center, two-electron Coulomb repulsion integral is

produced analytically with a finite number of terms. Each Coulomb formula may

be evaluated to arbitrary precision, since Mathematica works with integer

arithmetic. Hence, cancellation errors can be overcome.



Introduction

The difficulties of working with Slater-type orbitals (STOs) when doing

variational treatments of molecules are proverbial [1]. Nevertheless, progress

continues to be made [2]. The hope is that the integrals resulting from use of

STOs will be efficiently done so that their good physical characteristics can be

utilized.

In this paper, two-center, two-electron repulsion integrals of the Coulomb

type will be evaluated to specified accuracy by use of a commerical computer

algebra program called Mathernatica [3]. Our method is that of the Edwdin

alpha-function [4], in which displaced orbitals are expanded in an infinite series

of spherical harmonics with functional coefficients (alpha-functions). By use of

an in-house version of computer algebra we have been able to characterize each

STO by a C matrix [5]. The fact that these matrix elements are integers is the key

to our being able to take advantage of the high level language and power of

Mathentatica.

We have already shown [6] how Mathernatica can generate a C matrix for

each displaced STO and how a formula for overlap integals can be evaluated to

arbitrary accuracy. The more difficult Coulomb problem involves the integration

over two electrons and thereby casts light on how all multicenter molecular

integrals may be done.

The Alpha-function and C matrix

The Lowdin a-function method expands displaced orbitals in an infinite

series of spherical harmonics about a single center (the origin) before the required

integration is attempted [4]. The functional coefficients of the spherical

harmonics are designated as a-functions. We take a displaced STO to be centered

at (0,0,a) in its local coordinate system (R, E, 4), and write it in terms of the

original coorinate system (r, 0, 4) [5,7]. Thus,

2



X= AR N -1 e-Ot YL(E, 0),

1 1

_ -A F(2L+1)(L+M)! 12 [4r(.e-FM)! 2~
L- 4r(L - M)! _ L(2t+I1)(-e-M)'J (- 1 )

NLMM
X " (ca, r)Y 1 , (e,qo),

where

NLM (2+1)(+M)! N + L+ N 1 0 NLM

aI ( a r)= 2(1 +M)! 7I jI C IM 6j)

H. *a, ,- L-1- l(r)j-' - 1

xHii a)

and

H e-Ca [(- 1 )j er - e- r] ' r < a

j e-Cr [(-1)i e a e-ca l, r> a

A = (2 )N+1/2 [(2N)!]- 1/ 2 is the normalization factor, N, L, and M are the quantum

numbers of the orbital, and is the screening constant or orbital exponent.

Most importantly for our developments the elements of the C matrix are

integers. Originally, they were obtained by programming the following

expression, using FORTRAN and a simple in-house version of computer algebra

[5,7]:

3



[(L+M)/2] L+M-2p L+M-2p-q

X X C LN(i,j)a'rJ = I I X
1=0 J=O p0 qO v-O

[(I-M)/2] e-M-2p' I-M-2p'-q' t t-k

p .=iO q*=O v'=O kfO k'=O

axrY (- 1 )v+q'±p+p ' +L (2L - 2 p)! (2f - 2p)!
4L+I+p-P'(L - p)! p! p'! q! q'! v! v'! (L+M-2p- q-v)!

(N - L + 2p + 2q + 2q')!
( - p')! ( - M - 2p'- q'- v')! (N - L + 2p + 2q + 2q'-k - k')!

where

x = N + L + 21- 2p'-2v'-2v - k - k',

y = 2p'+2v + 2v'+k'.

and

t = N - L + 2p + 2q + 2q'

Coulomb Integral

The definition [8] of the Coulomb two-center, two-electron repulsion integral

is

J:JI(1) xb(1) r,2' Xc(2) Xd(2) dVldv 2

We superimpose Xa(1) and Xb(l) at the origin, and Xc(2) and Xd(2) at a

distance of a along the z axis (0, 0, a). The superimposed orbitals may be merged

4



and expressed as a linear sum of orbitals upon expanding the spherical

harmonics.

The Coulomb integral may be written as

J=f xc(2) d(2) V(r 2) dv 2

with the potential given as

V(r 2 ) X* ( 1 ) Xb ()/r2 dvj.

The Laplace expression of r,' is

1 Do 4x rt I (l P) (~ ))

1f 1__ t< Y(0 1 1 ) Y(0 9 )T
r12 t=o - 2+1 r,, .

where r< is the smaller of r1 , r2 and r> is the larger.

Using orthogonality of spherical harmonics, the potential may be

determined. In our developments, in order to avoid having to distinguish between

real STOs and complex STOs, and to facilitate comparisons with the literature,

only the case of orbitals with magnetic quantum M=O will be considered. This is a

mild restriction easily removed once the chief problem of dealing with radial

integrals is worked out. Thus the potential becomes [8]

V(r,, 02) = k, J(L,Lb,i) V1 (r2) P,(02),

5



where

V(r2) { f fo d2 ' C,- + r2" Jfrdr, r'e<"

with (L.,L ,) = f P,. (0) PL, (0) P,(O)sin OdO, representing the Gaunt coefficients, with o = Ca + C6,

n=N N +N+, m=N.+N b -1- 1, k, = A.Ab [(2L. + 1) (2Lb + 1)] 1 2 /2. Note that Y,0(0,q))=
2t4+ 1p (8).

4,r

We perform the indicated integration to get

1 [n! nO nn r-k1
V,,(r2) = _.,; - e~ (n - k)! _)k + l '

r 2  k=O

+ mea2 m ! r -k

+ e- k=O (m-k)! COk+

The electron charge density for electron 2 becomes

Xc(2)X X(2)= k2R NA e- X(2L+I) (LC,Ld,L)pL(82 )

with k2 = AAd[(2L, + 1)(2Ld + 1) 2 /2, N =N+Nd-1,

Noting the a-function expansion

R[" e- Il PL(E 2 )= N1-I  a'L P'L(0 2 )
IL

and taking into account orthogonality (1L = 1) we finally get [9]

kk (2L +1)JrdV(LCLdL) (LLb,) fr2 dr V aL.
L £ (21+1) C

6



The sums over L and I are limited because of the triangular rule for the Gaunt coefficients.

For convenience, we divide the integral into three parts corresponding to the

three terms of the potential [10].

Let i,+i 2 +i3 =Jr2 drV a,. Thus,

i t= lN +  n! , a' '+j C1(i,j)
i=0 J=O jO

x(-1)J e - '2dr r j - 2 ecr + (-1)' eca fdr rj-21 e- - CC Jdr rJ-2' e" r}

" n! a i  +J C(ij)
i2 kO (n-k)!

x {-(-[) J e-a fdr r - 2
1+nk e - - ) r - (-1)' eca Jdr r J- 2 1+ n - k e - ( +C)r

+r 2+n-k -

dr rj e~ (M - 10.

x {(-l)j e - ° 
,aadr r J i + m - k e - (w- C)r + (-1)' eca f dr r j +I+m - k e - €( -a)r

-e- Ca dr rJ+I+m
- k ,-(o+C)r }

7



Each term of the summation over I and L is given by

=0+ i(2L +1) ( L )LcvL klk2

123 1 ( 1 + i 3 + ) 2 (La,Lb,) (LCd,L)

1
x L+21+2 aL+I+1P

the (21 + 1) factor having been cancelled.

Basic integrals

To carry out the analytical evaluation of the Coulomb integral, the following

basic formulas are used [111 (we have replaced the zero on the integrals by the

infinitessimal E).

a n+I E n+l
gl(n,a) =drr= n #-1;fEn+1 n+ 1'

gl(n,a) = na- Me, n =-1

fl(n,a,b) = dr rn e- "

e - ba n n! (ba)n- t + n n 0;
b =O (n-t)!(bn+

f ( ,b b-n-i -ha -nI(-n - t - 1)! 1 + (-b)-n-_

fl(n,a,b) = b e +(n-t)b

P (-n - 1)! (1baL (-n Ei(-ba)

-n- (-n - t - 1)! ([_nlb + y + nE],n<

t (n -1)!(-n-t)! (-n - 1)!

fl(n,a,b) = Ei(-ba) - [!nIbI + y + InE], n = -1.

8



To obtain the e limit, e-be has been expanded and all powers of E, except C0, have

been dropped [12]. From physical considerations, all inverse powers of Fe and en e

must cancel, if all parts of the program are considered. The other needed

integrals are:

f 2(n, a,b) =Jdr r"e

f2n,a,b) = -
1 an! (bay-t ,n 2t0;

(n-t)

f 2(n,a, b) = (-b)--' e-b I (- ~n - t - 1)V (b~ Ei(-ba), n < -1,

f2(n,a,b)=--Ei(-ba) , n = -

f 3(n, b)=Jdr r" e-br - n! n >0;

-n-I (---! (-)'-_____
f 3(n,b) = (- -)nIlnb+y+ie, n<1

t- (-ni - V) (-n - t)! (-n-i) [mVlY n] <

f 3(n, b) = - [enlbI-.-r + e], n = -1.

For the case of Coulomb integrals [10,13] we may drop all Ei and logarithm terms.

Also, Euler's constant y does not appear. Hence, our Mathernatica progamn does

not include these terms.

Programming of the Coulomb integral

Mathernatica is a high level language that has a remarkably close

correspondence to standard mathematical notation. Thus

9



imax jMax

I I(expression) = Sum [expression, {i,imin, imax, j,jmin, jmax}]
i=imin j=jmin

i(x)dx = Integrate[f(x),{x,xmin,xmaxl]

xmin

For added flexibility for iteration we may use Do-loops:

Do [Do[equations, {i, imin, imax}, {j, jmin, jmaxi].

It is convenient to use a Which statement that defines a function for various

parameter values:

fln_,Ix-1: = Which[test 1, function 1, test 2,function 2, True, function 31.

In this case, if test 1 and test 2 are unsatified, function 3 is selected.

After running the program of Table I, for the case of all ls orbitals with equal

screening constants (a = b = c = d =1, w = C = 2, typing "coulomb" produces

Roothaan's [13] formula (2p =a = 2a). Typing a = 1/100 and N[coulomb, 20]

produces 0.62499166683332546. Typing N[coulomb,30] produces

0.62499166633325460009943731. Although we have requested 20 digits and 30 digits

we get 17 and 27 digits computed. This is because of cancellation errors caused by

the differencing of nearly equal numbers. Mathernatica trys not to produce

worthless numbers.

To conform to Afathernatica protocol and ior clarity in typing the following

notation is used:

Na = nna, La = hhdia, Ca = alpha; Nb = nnb, Lb = hhb, b = beta; M = mm; Aa = aa,

Ab=ab, A c =ac,Ad=a l;L=hh, e=h.

10



The Gaunt coefficients are produced by explicitly integrating over three Legendre

polynomials.

Results for unequal screening constants

Table II shows the results for several examples of Coulomb integrals. These

examples deal with the more difficult case (for other methods) of Ca + Cb * Cc+ Cd

(w # zeta). In our programming we are only required to replace glu-2h+n-k, a) by

f'lU-2h+n-k, a, w-zeta] and glU+l+m-k, a] by flU+l+m-k, a, w-zeta]. The first

example produces the 12 digits given by the author [14] using a Taylor series

expansion of a computer algebra formula using p and t (p = (w + C) a/2, t = (w - C)/

(w + C); p = 0.02, t = 0.01). Hence, we see that a closed formula can effectively

control the word length of the computer. For the case with a=2, there is

agreement with the seven decimal digits obtained by using expansions of the

alpha-function [9,15] in a FORTRAN implementation for the Coulomb integral.

Finally, we take two extreme examples using 4f, 3d, and Is orbitals with

separations of a = 0.01 and a = 100. With a = 0.01 we need to request 40 digits in

order to get 21. The example with a = 100 shows that small values present no

problems.

Conclusion

The examples shown in Table II with wide ranging parameters indicate that

Coulomb integrals can be computed to arbitrary accuracy for all physical systems.

It is important in developing fast alternative methods to have available completely

trustworthy benchmarks for all parameter ranges. This is assured because

Mathematica uses integ -- arithmetic.

Other multicenter molecular integrals are under study using symbolic

programming.

11
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(basic integrals *

fl[n_,a_,bJ :=Which[n>=O, (-Exp[-b*a]/bA(n+i)*Sum[n!/(n-t) !*Ca*b)A-
(n-t), {t,O,n)]+n!/bA(n+i)),

((-b) A(-n-i) *Sjm[ (-Exp [-b*a * (-n-t-i) !/ (-n-i)!
/ (-b*a) A (-n-t) + (-n-t-l)!I/ (-n-i) 'I(-n-t)!),
(t, 1,-n-i)]),
True, 0];

f2 [n_, a _,b _]:=Which~n>=O,Exp[-a*b]/bA (n+i) *Suz[n!/ (n-t)1* (b*a) A (n-t)
(t,0, n)],

- (-b).A (-n-i) *Sumj[-Exp[-b*a] *(-n-t-i) I/ (-n-i) I/

True, 0];

f3[n_,b_]:=Which[n>=0,n!/b A(n+i),

True, 0];

(*data*)

nnal; hha=0; alpha~l
nnbil;hhb=0; beta~l
nncil; hhc=0; gamma=i
nndil; hhd=0; deltal
zM=-0;
(*constants*)
aa=Sqtt[(2*alpha) A (2nna+!) /(2nna)!];
ab=Sqxt [(2*beta) A (2nnb+i) /(2nnb) I ;
ac=Sqrt[C(2*gainma) A (2nnc+i) /(2nnc)!];
ad=-Sqrt [(2*delta) A (2nnd+i) /(2nndfl];
w--alpha+beta;
zeta=gamza+delta;
klaa*ab*Sqrt[ (2hha+i) *(2hhb+i) 1/2;
k2=ac*ad*Sqrt[(2hhc+i) *(2hhd+l) ]/2;
nnnnc+nnd-i;

coulomb=0;

Table 1. Program using Fathematica for the Coulomb integral.



%'*do-loops for h and hh *

Do[ Do [
n=nna+nnb+h;
m=nna+nnb-h-1;
cpolynomial=Sum (aA(nn+hh+2h-2pp-2vp-2v-k-kp) *

r A (2pp+2v+2vp+kp) *(-1) A(v+qjp+p+pp+hh) *(-1) AJh*

(2hh-2p) !* (2h-2pp) !/4 A (hh+h-p-pp) /(C(hh-p) !*
p!*pp!*q!*qp!*v!*vp!*(hh+mm-2p-q-v) I)*
(nn-hh+2p+2q+2qp) !/ ((h-pp)1* (h-mm-2pp--qp-vp) !*
kp! *(nn-hh-I2p+2q+2qp-k-kp)!),
(p,O,Floor[(hh+rnm)/2]l, (q,O,hh+nim-2p),
(v1 O,hh+znm-2p-q), (pp, O,Floor[(h-mm)/2]),
(qp,0, h-mm-2pp), (vp,0, h-mm-2pp-qp),
(k,0, nn-hh+2p+2q+2qp),
(kp,0, nn-hh+2p+2q+2qp-k) J;

cmatrix=CoefficientList [cpolynomial, (a, r) J;
ccmatrix;
il=Sum~n!I/WA (n+1) *aAi *zeta A(i+j) *c[[ifi, j+1J]]*

((-1)A j*Exp[..zeta*a] *fl [j-2h, a, -zeta]
+ (-1)Ai *Exp[zeta*a] *f2 [j-2h, a, zeta]
-Exp[-zeta*a] *f3[j-2h, zeta]),
(1, 0,nn+hh+h), (j,O,nn+h)];

il=Simplify~il];
i2=Sum[n!/(n-k) !/WA (k+1)*zeta A(i+j) *a Ai*Ci+1, j+1]]*

(- (-1) Aj*Expt..zeta*a] *gl [j-2h+n-k, a]
- (-1) Ai*Exp [zeta*a] *f2 (j-2h+n-k, a, w+zeta]
+Exp [-zeta*aJ *f3 [j-2h+n-k, w+zeta]),
(i,0,nn+hh+h),(j,0,nn+h),(k,0,n)];

i2=Siznplify[i2];

i3=Sum[m!/(m-k) !/WA (k+1)*zeta A(i+j) *a Ai*C[[i+1, j+1]]*

((-1)A j*Exp[-.zeta*aJ *gl [j+1+m-k, a]
+ (-1)Ai *Exp[zeta*aJ *f2 (j+1+m-k, a,w+zetaj
-Exp[-zeta*aJ *f3 [j+1+m-k,w+zeta]),
(i,0,nn+hh+h),(j,0,nn+hJ,(k,O,m)];

i3=Simplifyji3];
i123=i1+i2+i3;
i123-Simplify [i123];
i123=i123/a A (hh+h+1) /zeta A (hh+2h+2) /zeta A (nn-1) *kl*k2* (2hh+l) /2*

Integrate [LegendreP [hha, x] *LegendreP [hhb, xl*LegendreP [h, x],

(x,-1,1fl*
Integrate [LegendreP [hhc, ,cJ*LegendreP [hhd, x] *LegendreP [hh, xJ,

(x, -1,1)lflI
coulomb=couloib+i123;

(hh, Abs [hhc-hhd] ,hhc+hhd, 2),
(h,Abs[hha-hhb] ,hha+hhb,2) 1]

Table I (continued)
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Analytic L~iwdin Alpha-Function Method For

Two-Center Electron-Repulsion

Integrals Over Slater-Type Orbitals

Herbert I. Jones

Department of Physics

Florida A V Al University

Tallahassee, FL 32307

ABSTRACT

Using the Lowdin alpha-function method in which displaced orbitals are ex-

panded in spherical harmonics, two-center, two-electron repulsion integrals of the

Coulomb, hybrid, and exchange type are done analytically using Slater-type orbitals.

Computer algebra and integer arithmetic are used to obtain analytic results and

avoid cancellation errors by the generation of rational matrix elements for C, E, and

F matrices that are used to express the a-function. The formulas for tle integrals are

kept simple by reversing the order of integration over each part of a split quadrant.

Only two basic integrals are used which are first efficiently evaluated by using look-up

tables and then used repeatedly.



I. INTRODUCTION

The need for basis sets to be constructed of Slater-type orbitals (STOs) when

dealing with current problems of molecular reaction dynamics and variants of density

functional theory has been voiced by several quantum chemists. And this need

is still felt in the more traditional studies of bound state molecules.1 The lack bf

analytic procedures have mitigated against the use of STOs in contrast to the almost

universally used Gaussian-type orbitals (GTOs).

This paper deals with two-center two-electron repulsion integrals of the Coulomb,

hybrid, and exchange type. The L6wdin alpha-function method 2 is used in which

displaced STOs are expanded in spherical harmonics, as was first done by Collidge. 3

This method has been augmented by computer algebra and by the use of matrices

with integer elements, 4 to avoid the ever present danger of computer cancellation

errors.

In addition to presenting a method for doing all two-center integrals with the

possibility of high speed and accuracy, our method has techniques that can be used

in the solution of three- and four-center integrals.

Much of the early work on two-center integrals was done in elliptical

coordinates. 5- 8 Later work has used a variety of more genera! methods. 9

II. ALPHA-FUNCTION REPRESENTATIONS

Every displaced STO may be expanded in an infinite series of spherical harmon-

ics; the functional coefficients being designated as a- functions. Assume that a local

coordinate system (R, 0, W) is displaced a distance a along the z-axis. In terms of the

original coordinate system (r, 0, W) we have 10

x = A RN- 1 e- (R Y'(e, )

X= A [(2L + 1)(L + NI)!] 2' 0 [ 4,r (I +M)! 2 (1X CN-I1 4ir(L - A Jl) E (21 + 1)( - I)! (1)

X(_1)A1 afNLAJ(a r yAI,×~ o/L((a,(r) )

where

cNLIM(Ca, r) - (21 + 1)(1 - M)! N+L+ N+1
2(1 + M! (2)

X CNLAM(i,j). #j . (Ca)i-L-I-1

2



and

Hj {e-Ca[(- 1)j eCr -e-C'], r < a (3)

e-(r[(-1)iea - e-al, r > a

The normalization constant A = (2 ()N+1/2 [(2N)!1-11 2 ; N, L, and M are the

quantum numbers of the orbital; ( is the screening constant or the orbital exponent.

For small values of the parameters it is necessary to expand the exponentials in

the a-function, and by use of computer algebra a triple sum is reduced to a double sum

with an appropriate E or F matrix with rational elements.1 1 Using these expansions

our method is stable for arbitrary values of screening constants. Thus,

- N+L+I JMAX
e-a F E EI(i,j)(Ca)iL (Cr)l, r < a

i=O j=L
aj~r) = (4)

MAAX N+1
e - r E F(ij)((a)i(Cr)j - - 1 , r > a

i=L j=0

In our examples JMAX = IMAX = 36 was sufficient.

A simplified working form of the a-function is obtained by leaving only the r

variable intact, and storing one-dimensional Y(j) and Zj(j) matrices.

JMAX
E Y() rl, r <a
j=L

al = (5)
N+1

Er Z Z(j) r' 1 ' r > a
j=0

III. COULOMB INTEGRAL

The definition 5 of the Coulomb two-center, two-electron repulsion integral is

J JX(1) Xb(1) r- 2 xc(2) x*( 2) dvj dv2  (6)

We superimpose Xa(1) and Xb(1) at the origin, and Xc( 2 ) and Xd(2) at a distance

of a along the z axis (o,o,a). The superimposed orbitals Xc( 2) and Xd(2) may

be merged and expressed as a linear sum of orbitals upon expanding the spherical

harmonics.

3



The Coulomb integral may be written as

= j Xc( 2) x*(2) V (F2) dj 2  (7)

with the potential given as

V('2)= JXa() Xb(1)/ r1 dvi, (8)

The Laplace expansion of r 1 is

1 0 4ir r ((

r12 A--0 ": "=-1 P) A*(2,V 9
A= - L..1 2A +1 r> 1

where r< is the smaller of rl, r2 and r> is the larger.

Using orthogonality of spherical harmonics, the potential may be determined.

In our developments, in order to avoid having to distinguish between real STOs and

complex STOs, and to facilitate comparisons with the literature, only the case of

orbitals with magnetic quantum M = 0 will be considered. This is a mild restriction

easily removed once the chief problem of dealing with radial integrals is worked out.

Thus the potential becomes 5

V(r2,02) = k1 Z(La, Lb, A) VA (r2) PA(82), (10)

where

VA(r2) = { j e- i + 7. j dwr}(A+l 2 e ' Fr dri r' n e-  , ()

with (La, Lb, A) = f PL. (a) PLb (0) PA (O) sin 9dO, representing the Gaunt coefficients,

and w =a + Cb, n = Na + Nb + A, m = Na + Nb - A - 1,ki = Aa Atb[(2La + 1)

x (2Lb + 1)11/2. Note that Y1
0(0,Wo) = AV 1 PI(O).

We perform the indicated integrations using the formula

f n n n - k

e-WZx n d= -ez k (12)

k=O

I I I I4



n nkl
VA(r2) n! e 2 n n! r -

k=O 
(13)m mI r M- k

k=0 (r w

The electron charge density for electron 2 becomes

xc(2 ) x*( 2) = L RN-_ e_(R2 (2L + 1)(Lc, Ld, L)PL(02) (14)

L

with k2 = Ac AdI(2Lc + 1)(2Ld + 1)J2 /2, N = Nc + Nd - 1, ( = Cc + Cd.

Noting the a-function expansion

RN-i e-R 2 PL (e2 )- L- 5 a P(0 2 ) (15)

IL

and taking into account orthogonality (L = A) we finally get

kjk 2  5 5  (2L + 1) (Lc, Ld, L) (La, Lb, A) Jr2dr VA aL (16)

C LA

The sums over L and A are limited because of the triangular rule for the Gaunt

coefficients.

The Coulomb integral is reduced to evaluating basic integrals of the type

j e-znd x , n>O, andf e- Xn dx , n>O, or n<O (17)

once the appropriate a-function representation and VA are substituted. These evalu-

ations are done rapidly using look-up tables and computer memory (see Appendix).

To be explicit:

j = kl kS2 ( 2 L + 1)(L, Ld, L) (La, Lb,A)- 1 (2A + 1)
L AX

{ JAA [ ! YL(j r-X di'
j=A5
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+ E (n : k)! uk. yL j) 10 n-k+j-+l e-wdr
k=O

+ ZI (m~k!kl 1 LJ a rmk+3++ 2 e-wrdr] (18)+ ( t (j) /-n,. d,- d)k=ON+A[ 0, /o
+ E n! zl (j) ,.j-2A e-(r d,.

j=O I~~ a

n!" t (: z, (U) [ n-k+j-2A e-(w+()r d
+ dr= (n - k)! Luk+1

+ ' m ! 1 L (j) 00rrn-k+j+l e(+rd
+E_ (m- k)! wk+l Z
k=O

where

N=N,+Nb-I

n=Na+Nb+A

m = Na-+-Nb -A- (19)

(~a+C(b
Cc6 + (d

IV. HYBRID INTEGRAL

All two-center, two-electron repulsion integrals are given by the same formula

but they differ in the location of the orbitals. The hybrid integral7 has three orbitals,

Xa(1),Xb(1) and Xc(2), placed at the origin and one orbital Xd( 2) placed at (o,o,a).
With this being the case the potential for the hybrid integral is identical to that of

the Coulomb integral. The charge density Xc( 2 ) X*(2) is somewhat simpler.

k2  I -(rN-I

XC(2) x* (2) = - e r2 E kd (r2) P1. (02) PL, (02) (20)dd 2r

Integrating the density over the potential we get

I =kik 2  S S (La, Lb, A) (Lc,A, Id) f r 2dr VA cd e-CcrrN,+' (21)

6



Again, the sum is limited by the triangular rule for Gaunt coefficients, and

upon a-function and VA substitutions the hybrid integral reduces to evaluating basic

integrals. To be explicit:

I_= k11 k2  (La, LbA) (LcA,1d)

d A Id

IJAAX n!Y ja N~+e (C ~
n: nA d () r

N + j-A e-(.r dr

+ m1.- d 1 i) fa .N+mn-k+j+A-_ e (Cw)r dr
k=O (r -k)!wk+l d 0

M I-Y N,+-k+j--A-l~- e(+~ di'
+ Z (n -k) k -k+I Id (jI0ra(2

k=O Po
+ Ndd n! ] d 00) rN +  - k +- 1 e- (  ~ dr 22
+E m I k)]+ l d( a
j=0
ndl ni z d 0N +-+ j- - A- 1 e - 1 r~ ~

+ Zn(-)n! w~( 1 Ud () arrnkjAl~ e_+wr

+.. (m- k)! fa
kz M dJ (i) rNc+mk+j+A-ld (wrd]k=0 (M- WJ

Symbols are as in the Coulomb case.

V. EXCHANGE INTEGRAL

For the exchange integral5 we place Xa(1) and Xc(2) at the origin, and Xb(1) and

Xd(2) at (o,o,a). We substitute in the following expressions, invoking orthogonality,

and obtain an infinite series for the exchange integral, K.

Xa(1) = Aa rN - e r YO,(o1,,p1)

A b V2Lb _+1 ab1 .(rj) Y° (o1, p)Xb(1) = Ab2 1 Z 1

1b =
Xc( 2 ) = Ac rNc- I e-(2r'  (23)2 L,t 2, IP (3

Xd( 2) = Ad 2 Ld+l 1 d (r2) Y (02, W2)
Sd2) a1 (T,)

7



oo , 4wr rA ,,]

1 = 4 )2A 1 +  (01, WI) 1' (02, W2 ) 24
A=O 2-A A

kjk2
K Nb- 1(N~ KA

with

IA\ (LC IA,ld)(La,A,lb)
Id Lb r )' (2 4 )

x Jdrl dr2 r~a +1 e-ar1 a' (rl)r N,+1 e(cr2 Q d (r2 ) A(4if r>)r

On a previous occasion 12 we have first determined the potential, but this leads

to di cult basic integrals. To avoid this we shall split the (rl, r2) quadrant as in

Figu, I, as was done by Lundquist and L6wdin. 13 For arbitrary functions f(rl) and

g(r2) we get a more symmetry integration scheme. Thus,

r c~ A 00 r2 /JJ dr1 dr2 f(r1 ) g~r2) -A< = fI dr2 g,2 di'1 f(rl) rj
2)r2

+ 1 , drl f(rl) fri dr 2 g(r2) r-

Therefore, we may write

Kx - K1 + K11, (26)

with

KI =1 Z (LCA, d) (LcA,ld)
1  d( 2 r 2 (27)

x 0 dr2 r2' 4  e ai + 10 drl ria e -(Gr 1 ab r 1

In a analogous manner K1I can be written.

To make our method analytic, the first integral for the "potential is done by

a simple in-house version of computer algebra. Because two representations of the

8



a-function must be used, depending on whether r is less than or greater than a, six

regions of the quadrant must be addressed separately. The method will be sufficiently

illustrated by just considering the first three regions, that is

KI = K1 + K2 + K 3.  (28)

Region 1. Here we have r < a. Hence,

U' (r2)- = r2
J ~ drl rN*+I e-CGri a'(r2) rAl

r2
JMAXr (29)' ib N4 +I+j+A e-(ar1

U' (r2)= A+ E Ybl (j) dr 1l
A r2 i=Ib 1

Using the formula 5

dx x' eW - rn+ l n! e- r Z k + k + 1)! (30)

then,

JMAX oo k Na+l+j+k
Ul(r 2 ) = n! e-Cr2 Irb k b(nk±1 ' (31)

j=lb k=0

where n = Na + I + j + A.

For our examples, we take the largest power of r2 to be 36. The computer

generates and stores the coefficients of r2.Thus,

36

UAI(r 2) = e -<o2 1j CI (A,m)r, (32)
m

The "potential" for Region 2 is simply

U2 -(,~a 36 AI

z(r2) =- m CI (A,m)am+A+ ,  (33)
T2 m

2(r2) = C2- . (34)

9



For Region 3 we have

Ug(r 2 ) r2=lj drI rlN ,, -t- +A e-Cri -(br Nb+lb Z-, ()r (35)
2 j=0

Using the formula

r2nn-k n -dx xn e-W= e-Wr2 n! r'2 + e- wa n' an-k

klo (n k k)k E,,k+1 (36)k=O k=O

with w = Ca + (b and n = Na + j + A - Ib we get

U 3 (r 2 ) (-A71) E -wr2 b ( n! (-1) ,.-k

r2 j k n! 2(37)

+ 1+ Z 13 e-"Z( a -k
2 j k

and by computer algebra

e-wr2 2N.+A C3 4 (A)U3(r 2 ) ,+ C3R(A,,n) r + --=- (38)
m=O 2

where C3 R(A,m) and C3A(A) are stored arrays of coefficients.

Finally, substituting in the proper a-functions for the second integration we get

36

K' = 3 17d (j) C, (A,m) a dr rNc+1+j+m e - ( +(. ) r

j=Id M

Nd+ld oC

K= E Zd (j) C2(A) ] dr e-(C+Cd)rrN- 1+ - lb -

Sj=0(39)
Nd+Id 2N,+A 009

K= Z Zd (j) C3 R(A,m) fa dr e-(w+Orr

Nd+Id 00j=0 m0a+ lz a , (J) C3A(A) [ ,e(I )' " o ' j z -

These integrals are readily identified as composed of our two basic integrals.

10
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VI. DISCUSSION

Table I shows the results of evaluating two-center Coulomb, hybrid and exchange

integrals using various combinations of is, 2s, and 2p orbitals with arbitrary screening

constants. Our method is completely stable for these permutations, as is to be

expected. The Coulomb and hybrid integrals are assembled from a finite numbir

of terms as determined by the triangular rule for Gaunt coefficients; the exchange

integrals are approximated to 7 decimal digits by using 12 harmonics. These

calculations were made on a CDC CYBER 850 computer. E and F matrices and look-

up tables for A,(z) and En(z) are considered as data which is put into fast memory

at run time. The "set-up" time or "overhead" is in the generation of Y and Z one-

dimensional matrices, the production of basic integrals, and Gaunt coefficients. This

overhead requires about 3 s of Central Processing Unit time (CPU) for the exchange

integrals and about 2 s for the Coulomb and hybrid integrals. Some of the same values

are needed for all of these integrals. In a SCF calculation, the set-up time would only

be needed once for a large number of integrals. The CPU time of the subroutines for

the Coulomb and hybrid integrals was about 0.25 and 0.4 s, respectively. The CPU
time to generate 12 harmonics for the exchange integrals was about 0.7 s.

CONCLUSION

The analytical method outlined here for two-center STO integrals can be imple-

mented with parallel processing or vector processing. And with improved program-

ming it should be possible to significantly reduce computer time. In addition, analytic
and semi-analytic methods for three- and four-center integrals for STOs can use some

of the strategies developed here.
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APPENDIX

The speed of our method depends on the rapid evaluation of the basic integrals.

These basic integrals occur many times, so generally speaking, they need only be

evaluated for the highest harmonic and then stored in fast computer memory to be

used repeatedly. The initial evaluations of the basic integrals are done using look-tip

tables.

All the basic integrals needed can be written in a simple form after an obvious

change in variable. Thus,5

En(z)=j e- z xZXdz, n>0 (1)

and

An(z) = ezx% ndx, n>Oorn<O (2)

These basic integrals are accurately evaluated over a z-grid with Az = 0.1 over a

range sufficient to cover all the electron repulsion integrals to be investigated. These

tables are stored on magnetic tape and put into fast memory at run time.

Silver and Rudenberg 6 showed how look-up tables may be generated and En(z)

evaluated by interpolation using a Taylor series whose derivatives are given by a shift

upward in n.

We found that this approach can also be used for An(z) even when n is negative.

The simplicity of this procedure is shown by first writing the Ith derivative of En(z)

and An(z).

d' En (z) = (-1) En+1 (z)dzi (3)

An(z) = (-1)' An+(z)

Then

dEz) d En (z) h 2  d' h 1
E(h) En( dEn( z) h + ) h .+ T En(z) (4)

h) dz dz 2  2! + z /".

and

En(z + h) = En(z) - En+l(z)h + En+2(z)h2 + + (-1)' En+1(z)-h' (5)

13



Similarly,

An(z + h) = An(z) - An+l(z) h + An+2( +..- + (-1)' An+1(z)h (6)

Five terms of the Taylor series give sufficient accuracy. In our examples, n varies

from -22 to 6, but we extend n to 10 so as to use a full Taylor series in every case.

Hence, derivatives need not be stored.
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Semi-Analytical Method for Four-Center Molecular itegral.
over Slater-Type Orbitals

Herbert W. Jones
Physics Department

Florida A&M University
Tallahassee, Florida 32307

Abstract

A strategy for the evaluation of four-center molecular integrals over

Slater-type orbitals is developed using the Ldwdin alpha-fimction approach in
which displaced orbitals are expanded in spherical harmonics. The harmonic

potentials are produced analytically and evaluated along a grid. The harmonic

charge distributions are given an analytical formulation and are evaluated over

the common grid and numerical integrations are performed, for each harmonic.

Using an example with Is orbitals, only nine harmonics are needed for good

results.
. Computer algebra and integer arithmetic are used to generate C, E, and F

matrices that are stored as part of the data base. T and X one-dimensional

matrices are introduced as an aid in computation. The employment of look-up

tables, and vector and parallel processing promises to make this method, which

can be generalized, practical.
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Introducton

It is generally agreed [1] that it would be desirable to use Slater-type orbitals

(STOs), because of their more physical nature, in ab initio quantum chemistry

and moleuclar physics as well as the almost universally employed Gaussian-type

orbitals (GTOs). Advances toward this long sought goal have recently been made
[2], but a comprehensive STO computer code competitive with GTO codes has yet

to be written.

The author has continued to follow the path of the L~wdin alpha-function

method in which displaced orbitals are expanded about a single-center in an

infinite series of spherical harmonics with functional coefficients (Liwdin

a-functions) [3]. This basic method has been augmented by computer algebra and

integer arithmetic to avoid the pitfalls of cancellation errors due to the finite word

length of computers [4]. A modified closed formula [5] for the a-function led to a

C-matrix with integer elements [6,7]. To deal with small parameter values, the

exponentials in the a-function were expanded using computer algebra leading to

rational elements for E and F matrices [8].

The a-function method has been applied to four-center integrals to obtain

formulas [9] and analytical procedures [10]. However, there were several difficult

basic integrals that had to be dealt with and one that had to be done numerically.

A pragmatic view seems to demand that we abandon a formula approach or an

all analytic approach for this case and adopt a semi-analytical method in which

the first integral (potential) is done analytically and the second integral (energy) is

done numerically, for each harmonic. (An all numerical method has been done

[11], but its lack of speed confines it to a checking role.)

That a semi-analytical method can lead to good'accuracy was demonstrated

by McLean [12] and Clementi [13] using elliptical coordinates for an analytic

potential, followed by two numerical integrations for linear molecules. This
> procedure was proved effective for the general case by Musso and Magnasco [14],

in which a three-dimensional numerical integration is required. The advantage

of the a-function method to be presented here is that it only requires a

one-dimensional numerical integration for each harmonic used. This, together

with the better systematics of the method, promises to raise it to the level of

practicality.
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Our method will be illustrated by an example using ls-orbitals. The

generalization to higher angular momentum is straightforward [15].

Alpha-Function Representations

A ls orbital in its coordinate system is given by X = /2 e-tR/v. If it is

displaced a distance b along the z axis it may be expanded in spherical harmonics

or Legendre polynomials in the original coordinate system as

X = M at P1 (cos 0), (1)

where

1+1 t. 1
a 2t+1 0 E Ct(ij) Hij ( b)i t 1 ( 1r)' 1 (2)

t 2 i=0 j=O

and

e-b [(-1)J e~r - e'r], r < b (3)

e- r [(-1)i eb - e-0], r> b. (4)

The E matrix results when e~r and e' r are expanded and the triple sum is

reduced to a double sum by computer algebra. The F matrix results when eb and

e- b are expanded. In our example, a 36 term expansion was found to be

sufficient.

Thus
t+1 36

e-0 Z I Et (ij) ( bi' + 1 ( rJ, r< b (5)

a t ff

t+1 36
I Ft(ij) ( b)it+ 1 ( r)j-t-1 , r > b (6)

3



A further simplification results by just keeping r intact,

Lt+
Yt (j) = Z E t(ij) (Wb) i-t- 1 e- b (7)

i=0

36
Zt (j) = j- I Ft (ij) (Cb)i , (8)

leading to

36Y, YL(J) rJ, r < b (9)
i=t

C+1

e-r Z Zz(j) rjL-, r>b (0)
j=0

When it is necessary to evaluate the a-function over a grid for large values of

Cb it is expedient to introduce two more one-dimensional matrices immediately

derived from the general C matrix:

N+L+t
Tt(j) =(2t+ I)(-M)l e- b Cj-t-1 Y,. Cm (ij) (Ob) i - L - 1  r< b

2(t+M)! i=0 (1I)

N+ILt
Xt(j) =(2t+ I)(t-M)! Cj-l1 E' cN'M (i)[((-0 - e' b ] (Cb) i - L - t - l rI b

2(t+)! i=o 
(12)

Hence,

N+NY, TtUM [-1) e~r - e- r ] r J-t-1 r< b (13)

M j=

e' r : X t (j) r i- t- 1, r> b (14)
j=0
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-These various representationsof the a-function considerably simplify our

programming and also speed up its execution.

Four-Center Integrals for Is Orbitals

The formalism for the radial part of any STO is essentially the same,

therefore we may sufficiently illuminate our method by use of an example using
ls orbitals, given by Trivedi and Steinborn [161. In this case, ls orbitals with

screening constants of = 1 are located as follows:

X a (1) at (0,0,0), X b (1) at (0,0,b), X c( 2) at (c,0,0), and X d(2) at (0,d,0), with b =

c = d = 1.0. The method to be shown is valid for arbitrary b, c, and d, as well as a,

b, Cc, and d- Because of our use of the E matrix expansion, our methods are

stable for nearly equal or equal values of Ca and b. Since our method is partly

numerical, no problems can originate with the relative values of c and d-

Our task is to evaluate the integral

I = JXa() *Xb(l) r-l xc(2)*Xd(2) dvtdv2  (15)

in which each orbital is at one of four separate locations. We orient the molecule

so that X a (1) is at the origin and X b (1) is along the z axis at a distance ofb from

the origin. Using potential, we have

I V Xc(2)* Xd( 2) dv 2  (16)

with

r-1 dvj. (17)V(r2) = J a(1)* Xb(l) r 1 (

Substituting in the Laplace expansion for 1/r12, the expansion for X b, and

invoking orthogonality we obtain [10]

5



V(r 2 ,0 2) = . V.(r 2 ) P.(COS02), (18)

with

Vl (r2) = 4 (Ca Am J dr1 r2 e' arl (A (rj) (19)
rt+1 r1

where r> is the larger of r1 and r 2 , and r< is the smaller.

Explicitly,
_ _ ( 36 r+2

Vt(r2) = 4 (Ca h)2 1 Z Y- (j) j'dr rt+i+ 2 e-r

2F+1 4+ 0

36 b
+ r2  E yr dr rjlJ) e- rj=£ rt

S+1 )
+ r2 E Z J f dr ri-2t e'( a+ b)r , r2<b (20)

j=0 .L b a-

3__ b
Vt(r 2) = 4 (Cg Ch)3'2  E6 Ybi) Jbdrrt+J+2 e'Car

2t+1 r1+1 j=;

r+1 r
+ 1 E Zb () -2 dr ri + e-(C,+ 3 ) r

2"
+1 CDo

r2 Y, Zb () fr dr ri-2t e~a + ) r ,r 2 >b. (21)
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We will evaluate each of the harmonic potentials Vt along a hundred point

grid with a spacing of 0.1 units. This is accomplished, after an obvious change of

variables, by use of the following basic formulas [17,18]

1M
J x n e' zx dx = n! e-Z E zk (22)

kO (n+k+l)!

if'(" iLU 0 t

Jxn e' zx dx= e-Z&) n! 1 (23)
k=) (n-k)! el

n-1
J] e-z x dx = e-Z Y, (n 1 ). (-z)k-1 - (-z)n -I Ei(-z) (24)1 xn k= (n-i)! (n-i)!

Next, we must numerically integrate the potential over the charge density.

Using spherical coordinates, take the center of Xc to be at (c, F, y) and Xd to be at

(d, A, 8). Then [9]

xc = 2 E E (4n)1/2  Y'm (F,y) YIm () 2,q, 2)* (25)
m=O =-m 2mi-1

and

O n

Xd = 2 1 1 (4Kc) 1/2  (xdn Yn (A, 8)* Y (02, TO (26)
n=O v =-n 2n+n

Substituting in V, Xc, and Xd into the equation for I and invoking

orthogonality, we get

I = Z It (27)

with

It = r2 dr Vt pt (28)

and

7



p (r2)  7, 2 o. 2 ad (4ic' 1 2  7(
M -;1 2ii+1 (2t+19% 11 V

X Yv (A, 8) <m,p It,0 In,v> (29)

The angular brackets represent the integration of the product of three

spherical harmonics [19].
In our example, the values of t , m, and n are taken from 0 to 8 and we have

F = A = 5 = 900 and y = 00. The numerical integrations are done by Simpson's

Rule, obtaining I = 0.345538, which agrees with the four digits supplied by Trivedi

and Steinborn. As an internal check of our method, we set F = A = 8 = y = 00,

and obtain I = 0.50703 which compares well with the exact value for the hybrid

integral Ih = 0.50704 [20]. Table I lists the harmonics and their sums for our two

runs. The Central Processing Unit time on a Cyber 850 Computer was 11.4 s in

each case. The basic integrals were pre-calculated, stored, and reused. The

matrices C, E, and F are considered as part of the data base.

Conclusion

A feasible strategy has been formulated to evaluate the general four-center

molecular integral using Slater-type orbitals. Both objectives of sufficient

accuracy and speed appear within reach. Working within the framework of the

Liwdin a-function method, careful elimination of computer cancellation errors by

use of computer algebra has proven decisive. The rapid and accurate

implementation of programmes is assured by pre-calculated exact matrix

elements and look-up tables as well as computer vector and parallel processing.

Improvements in algorithms and numerical integrations are under development.
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Exchange integral Hydrid integral
Orbital locations Orbital locations

Harmonic F = A = 8= 900 7=0 F= A = =8=0

t it it

0 .3465644 .4573980
1 .0000000 .0444000
2 -.0010363 .0045491
3 .0000000 .0005674
4 .0000108 .0000911
5 .0000000 .0000188
6 -.0000004 .0000048
7 .0000000 .0000014
8 .0000000 .0000005

Sum .3455385 .5070311

Table I. Four ls orbitals are located by polar coordinates as indicated:
Xa( 1) at (0,0,0), Xb( 1) at (1.0,0,0,), Xc( 2) at (1.0, r,y),and

X d(2) at (1.0, A, 6). Screening constants are equal to 1.0. The
harmonics and their sums are given for the two cases.
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Multicenter Molecular Integrals Using Harmonic
Expansions of Slater-Type Orbitals and

Numerical Integrations

HERBERT W. JONES and BABAK ETEMADI
Departmenu of Physics Florida AJAI Universiq. Tallahassee. Florida 32)07

Abstract

Formula and analytic methods have previously been explored ror the evaluation of mullicenter molecular
integrals over Slater-type orbitals by employing the L3wdin a-function approach. These procedures are
greatly simplified by numerical integrations. The programming of this numerical approach is straight.
forward and hence can serve as a check on future developments.

Introduction

As is well known I I], the general problem of the evaluation of multicenter mo-
lecular integrals using Slater-type orbitals (STOS) in basis sets is still not competitive
with tile use of Gaussian-type orbitals (GcTos) in quantum chemistry. However,
investigators 12,3 j continue to strive to bring this about because of their belier in
the inherent superiority of STO basis sets.

By use of the Lowdin alpha-function method 14J, a formula that involves an
assembly of a triply infinite sum of formulae has been produced for the four-center
(the most centers needed) multicenter integral using Is orbitals and equal screening
constants [5). An analytical version of this formula has been produced (31 that is
much easier to program because all of the parameters are "ground up," except the
radial variable, to produce a simplified a-function. This paper shows how the mul-
ticenter molecular integral problem can be further simplified by use of numerical
integration that leads to very transparent programming and reduced computer time.
IHowever, here, we only achieve about five-decimal digit accuracy. But, of course,
accuracy and time is dependent on the numerical integration scheme. Nevertheless,
for the efficient writing of new programs, a first run using simplified and reasonably
fast programs is greatly desired; certainly the method to be presented meets this
criteria.

Expansion of Displaced Orbitals

To illustrate our procedure, it is sufficient to use all Is orbitals, with screening
constants equal to I (r = I ).

We shifl an orbital X ( )" 2 e- from the origin to a distance a along the z-
axis. Now, with respect to the origin we have 161

Internalional Journal of Quantum Chemistry: Quanlum Chemistry Symposium 24, 405-410 (t990)
0 1990 John Wiley & Sons, Inc. CCC 0020-7608/90/01040S-06S04.00
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X - (rr, Z aPi(cos 0), (I)
I-0

where

21 + 1+l 1+1a, Z Z QCi, j)llqa'--' - t -  (2)
2 i-o o

and

Ie-[(-l)Je"-e-'], r<a (3)

je_,[(_l)e _ e- C , r> a

For accurate evaluation of the a-function at small radial distances, we must expand
exp(r) and exp(-r) for r < a and Ihereby obtain a power series representation
with coefficients given by an E matrix [71. For Ihe case of r> a, an expansion of
exp(a) and exp(-a) leads to an F matrix (for s-orbitals the F matrix is the transpose
of the E matrix).

Thus

ea 1+1 IMAXa-Z -7 El(i, i)a 'r s ,  r < a

e-' IMAX 1+1

Z Z F,(i, j)a'r', r> a
i-I j-0

A further simplification results by just keeping r intact. Defining
I

Yl(j) = Z El(i, j)a'-I-'e -"  (5)
1-0

and

IMAX

ZI(j) =  F,(i, j)a' (6)
I-'

we may finally write

JMAX

-7 Yl(j)r 1 , r < a
4= (7)

{- E Z( )r r > a
J-0

In the case a = 2, we get convergence over the grid from 0 to 2 (r < a), and
from 2 to 10 (r > a). The grid values of a, are accurate to 12 decimal digits by
taking JMAX and IMAX to be 36. We choose a grid of 0.1 throughout.

*1
I
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Examples or Various Multicenter Molecular Integrals

Overlap

The simpjlest multicenter integral is the overlap

Locating x. at tlie origin and Xb at (0,0,a), we have

X= Or)"e~ (9)

and

Xb OW= (w a/ ZcvP(cos t) (10)

Using orthiogonality or Legendre polynomials,

S = 4 f dr r'e'cr1 (II

Tile exact formula in this case is

S e-'(I +a +a 13) (12)

For a =2, S =0.58645289.

Using a 100 point gi-id and Simpson's rule for numerical integration, we get

Is = 4 f dr r2 ea= 0.58645185 (13)

The grid spacing, 0. 1, and grid length, 10, have been chosen to achieve ive-decimal
digit accuracy, thereby including 99.9998% of (lie charge with the requisite accuracy.
The overlap is done in order to choose a proper grid. This task was accomplished
with 0.65 s of central processing unit (CPU) time, on a CDC Cyber 850 computer.

Tlirce-Ccnk. Nbclear-Altraction Integral (E .1etfrostutiC Potential)/

These two integrals (three-center nuclear attraction and electrostatic potential)
differ by only a constant. Working with the potential, we seek its value at tile point
(r2, taj) due to a charge density given as the product or two orbitals, X. located at
the origin and Xb at (0,0,a):

V(rz, t'2) =f dv1 X.( I)Xb( 1)/ri2  (14)

We substitute thie Laplace expansion for I /r,2,

I coI
r12 A-0On,--A r
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where r, is the larger of r, and r2 and r., is the smaller. Recognizing the orthogonality
of the spherical harmonics, we get

1'(r 2 , 62) V,(r2)P,(CO5 02) (16)

Willi

4 . 2 ,r (i
IAA 21 +lI.JoD r i" ali)(7

Assuming r2 =0.5 and 02 = 0 Withi a = 2, we have, dropping unnecessary subscripts,

I'1(r2) = - 'O's dr r 2e'rVal(r) + -' 10 dr r -j- c1(r) (18)
21 + Ir2  Jo 21 + I Is r

Hence,

V'(0.5, 0) V 1, - 0.45038 (19)
I.0

This value is obtained by using six harmonics and numerical integration. This is
to be compared Willh the exact value (8) of 0.44996.

The cpu time used was 0.69 s.

Exchange Integral

For the two-center exchange integral we use the same orbitals and their locations
as before. But now the potential is needed at 100 points along the r2 grid that is
similar to the r, grid. I ence,

4,r2  2~~j~j d r2 e- 'a 1(r) +4 r2j- 0 drr 2e-r"1'a(r) (20)

This requires computation at 10,000 grid points formed by a two-dimensional (e'i,
r2 ) lattice. This was done using 4.62 s of cru time.

The exchange integral is given by

K = ff X.(lI)Xb( I)r'lXc(I)xd( I) dvI dv2  (21)

where x. and Xc coincide as well as Xb and xj.
-The exchange integral is equivalent to

K =f duz x(2)Xd42)V(r2, 02~) (22)

Using the a-function expansion Of Xb and xd and the Laplace expansion of I 1r12
together Wiit thie orthogonal properties of spherical harmonics, one obtains 19)

K K, (23)
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with

K, = 4  dr r2V'e-'al (24)

Using five harmonics and numerical integration, we get K = 0. 184190, which re-
quired 4.45 s of CPU time. The exact value obtained by using tie closed formula
ofSugiura (101 is K = 0.184156.

Four-Center Integral

We finally solve a four-center two-electron-repulsion problem having three Is
orbitals located on a sphere of radius I, and one at the origin I I I].

This problem has been done by formula 151 and also analytically (9 1. The orbital
Xa( I) is located at the origin and Xb( I) at a distance of I along the z-axis. The
orbitals are used to produce the potential as shown. Orbitals X,(2) and Xd( 2 ) are
off-axis wifhi center locations given by spherical coordinates (a,Y,P) and (a,aA),
respectively, with a = I. Using the Legendre addition theorem, the expansions take
the form

X, 2 Z _ (25)
2na + I

and

Xd = 2 (4s)' a. Y.(A,6)*Y'(02, V2) (26)
n-0 a -_, 2n + I

Making the proper substitution, we may write the resulting integral as tile sum of
the product of radial functions I,,,. multiplied by angular functions At.. Thus

I = l,.mnAi,, (27)
I n n

where

I,.n= f dr r 2
111,a,, (28)

and

(4w) 31 'd,,,(21 + I)"'Z Y,('')Y, ,)m lO, ) (9
pI P

where the angular brackets represent Gaunt coefficients. (r, -y) and (A, 6) are the
angular locations of the center of the orbitals. The evaluation ofl,, is quite similar
to that or K, except that the formula is not closed. Reasonable answers are obtained
by taking I from 0 to 4 and tii and n from 0 to 6 with i +it r 6.

0000000
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To determine the accuracy of this integral, we set -y = I' = 6 = A - 0 and get a
hybrid integral whose value is known (I = 0.507045). The numerical result here

is I = 0.506284.

Conclusion

It has been dcmonstratcd that the multicenter integral problem is readily pro-
grammcd and evalualed by numcrical methods. A different numerical integration

algorithm might conceivably lead to acceptable accuracy and increased speed. In
any event, the ease in implementalion of the herein described method, at least as
far as Is orbitals are concerned, ensures that it can serve as a first check on any
new developments in molecular integrals.
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Analytical method for two- and three-center molecular integrals over Slater-type
s-orbitals using expansions in spherical harmonics

Herbert W. Jones
Department of Physics

Florida A&M University
Tallahassee, FL 32307

ABSTRACT

Using the Liwdin alpha-function method in which displaced orbitals are

expanded in spherical harmonics, two-center and three-center electron-repulsion

integrals of the exchange and Coulomb type over Slater-type s-orbitals are

evaluated. By means of computer algebra, analytical procedures are

implemented and no numerical integration is needed. The formulas for the

integrals are kept simple by reversing the order of integration over each part of a

split quadrant. Orbitals of the ls and 2s type are used to illustrate the method,

which can be generalized.
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I. Introduction

Almost all recent calculations in ab initio molecular physics and

quantum chemistry are done using basis sets made up of Gaussian-type orbitals

(GTOs), characterized by exp(-R 2 ), because of the ease of computation of their

multicenter molecular integrals. It is recognized 1 that basis sets composed of

Slater-type orbitals (STOs), characterized by exp(-R), are more representative of

physical orbitals, however, their molecular integrals have the reputation of being

"intractable". Yet, progress continues to be made toward the solution of the STO

integral problem.2

In this paper, the method of the Ldwdin alpha-function 3 is used again 4 in

which displaced orbitals are expanded about a common origin or single-center in

terms of spherical harmonics with functional coefficients (alpha-functions). This

time, the analytic method is simplified by defining a "potential" in various regions

of a split (rl,r2 ) quadrant. Now these "potentials" do not contoin the Ei function,

but only powers and exponentials. Hence, the second integration for energy

(Coulomb or exchange) can always be done analytically and only three types of

integration formulas are needed. As an illustration of this method, two- and

three-center exchange and Coulomb-type integrals are done for ls and 2s orbitals.

In the LIdwdin a-function method all terms separate into radial and angular

parts; our C, E, and F matrices for higher quantum numbers only differ in their

numerical elements. Hence, s-orbitals can serve as an adequate prototype for the

general two- and three-center problem.

A simple furm of computer algebra is used in our approach so that the

radial variable "r" remains identifiable, thereby making the method analytic.

Integer arithmetic is used to generate our C, E, and F matrices so as to avoid

cancellation errors (these matrices are considered as input data).

2



I I. Alpha-Function Representations

Every displaced STO may be expanded in an infinite series of spherical

harmonics; the functional coefficients being designed as a-functions. For a

s-orbital in its own coordinate system (R,q), X = A RN-i e- R YO(E),(p), where the

normalization constant A =( 2 C)N+1 [2N)!]-"2 , is the screening constant or orbital

exponent, and the spherical harmonic YOO(E),P) equals (4jO-112 . If the orbital is

placed at a distance of a along the z-axis of a (r,O,(p) coordinate system its

representation in this coordinate system is5

X = A/(N1) (2 t+1)-i/2 a (r) YO (0,(P)

where

N+t N+t
at(r) = 2 t±1 Z I Ct (ij) Hi ( a~ith- ( r)Jt-l

2 i=0 j=O
and

If the exponentials in the a-function are expanded, we get a representation in E

and F matrices: 6

I+Z EtA( i=O j=t

a t(r)=

IIMAX N+t
e- r I X. Ft (i j) ( a)1 ( t r>a. (2)

i= t j=0

3



A final simplification results by substituting in the numerical values of the

parameters to obtain Ye(j) and Z.(j), which are coefficients of the polynomials in r.

JIIAX
E Y (j)rJ , r<a
j=t

aCr) =

N+
e- r y Z(.j) rJZ' , r>a (3)

j=O

In this paper we have used 36 for IMAX and JMAX.

III. Three-Center Exchange Integral

The two-electron repulsion integral is defined as

K = ff dv1 dv2 Xa (1) Xb(l) r -1 Xc(2) Xd(2). (4)
12

The locations of the orbitals for the three-center exchange integral is given in

Figure 1. We let a be the distance to X b( 1 ) and b be the distance to Xd( 2 ); 0 is the

angle between a and b. In their local coordinate systems the orbitals are given as

Xa (1) = Aa e'ar, Yo (O, (p1 ) Xb(1) = Ab e-OR, YO (0 1, ql)
0

Xc (2) = Ac e-r2 Yo (02, 92) Xd(2) = Ad e8R2 Yo (E2 , (P2). (5)

We write the expansion of Xb(l):

Xb(l) =Ab E (2t+1)-"2  ab (1) yo (01,(1). (6)

4



By use of the Legendre addition theorem we have 7

Xd(2 ) = Ad I Y (4n)1/2 (2t d +1)-1  (2) Y(O l P)y~1*(6 2 ,p 2 ) (7)

Now,

cc t
1/r12 = 4n Z z (2 +1) -1 <_y_ _ ( l1, p1) Ym1 (02, p2) ,  (8)

Z=O M=-Z +Ir>

where r< is the lesser of rI and r2 , and r> is the greater. We will use

YO (0, P) = ((2 +1)/4n)1 2 Pt (cos 0). (9)
t

Substituting these expressions into the formula for the exchange integral and

using the orthogonal properties of spherical harmonics, wc get

K =I Kt Pt (cos 0) (10)

where

K = A f dr1 dr2 r 2 r 2 e-ar 1 e-Yr 2 C (1) <(2) r ;./r>.1 ! (11)
12 

and

At = Aa Ab AcAd (21 + 1)-2. (12)

ODbl 6 Ndl1

5



To simplify the integrations necessary for Kt we divide the (ri, r2) quadrant

into nine regions as shown in Figure 2.

Now we may write8

I II

K -K + K L  (13)

IKt = At.iS rz~c~'dr 2 e'Tr2 a (2) 1 jr2 rlalr 1 e (1)r4#,arrN+1 dr1 ear (1)

Kt = At 1D rNa+1 drl e-'°r a(1) 1rc dr2 e-r 1

r I r

(15)

We take the "potential" in the various regions to be

1 1r
V = fr 2 drl P(1) rf

vt= t 0 t

2

Vt = 1 drP(1) r

t+

6



4 2
V= V

5 3
V = V

6 f1
: 1 rodr2 P(2)r 2r, 0

7 6
V, Vt

8 b 2 t
= dr 2 P( )r 2

9 r r
V t b dr2 P(2 ) r2

where

P~l) = rNa+l e-ar1 ab(1)

and

P(2) rN c+ eyr2 ad(2). (16)
t 2c

We take note of the various expressions for the a-function in the various regions:

JMAX
ab(1; Q() rj r, < a (1"7)

7



Nb+t

ctb (10 i-t r (18)t e(1) Or, Z Zbj) rJ' , r1 >aj=o

JMAX

ad (2) = J Yd (q) r q r2 < b (19)
l q=/ 2

Nd+Z

cz (2) = Z Zd(q) rq-Zl , r2 >b. (20)

We write

I 5 i
K = Z Kz (21)

i-1

and

II 9 i
K t Z K t (22)

i=6

with

1 2 b 2
K = A dr2 p(2) V Kt = At 1 d dr 2 P£2) Vt

3 b 3 4 4
Kt= Au ta dr 2 p( 2) V K t = A1 fb dr 2 P 2) V

5 co 5 6 6 v
Kt = At fb dr 2 p2)V Kt = At 0 6dr p ( v

8



7b 7 8 8
Ket At fa dr, pi) V Kt A tJb dr1  p V

9 9
K = A~ fb dr, p~l) V (23)

Three basic formulas for integrals are needed (the first one given by

Silverstone9 ):

1 0 (-Z) k

0oX -xd S k! (n+k+1) (4

r n! 1
1 ~ ~ dx ez O (n-k)! el (5

f, e-z dx = e-Z Z (n-k-i)! (-Z)k-1 - (-Z)n-1 Ei(-), n>o. (26)
1xfl k-1 (n-i)! (nt-i)!

Taking note of the different expressions for the a-function in the various

regions and making the appropriate change of variable in the basic integrals, we

get analytic expressions for the potentials:

1 MIAX c
VtII______ yb (j) rNa+j+k+i

it ~ k! (n+k+l)

9



1 ~ JMAX 1

.Vt in=Ne+l Pt1  2

2 JMAX

Vt -1 1 (a~k yb() a Na +1 +j+k+i2
r2+ j 'Zk= k! (n+ke-) t

2 2

with = N a

2

wit nNbN+ZZ~

- eZc+j)r 0) f r~j 2! r

3R %+t n
1t e-( +£2 Zb ) n! an-k c+ a

+ ~ k== (n-k)! .....7

3A 3R+ 3A nN~ R3

rt~j rt+1O n-)

2 2

with n = Na +j.

10



6 JMAX
V z I(-y)k yd, (q) rNc+q+k+l

t q-- k=O k! (n+k+1)_

6 JMAX 6
V=ei r1  z rm

7 6

8 JMAXv - -L F, (-Y)k e-)b Yd(q) bN +t+k~I+2

LI k! (n+k+1)

8 8

I

with n Nc + t+q+l.

9 Nd+t
V I 1 Zd (q)Jfr dr 2 rN +qe-7+)r

t e{y+4-) r, E ; Z d (q) n! r n-k
q=O k=O -tI

rt~l(ni-k)! (~Y+,)k+l

9B3 Nd+t j+l
Vt1 1 Z d (q) n!I bn-k e4Y+4) b

(n-k)! (4Skl



9
V V + V

9 t+2 9R 9B
vt= e-(Y+)r 1 I Pam rm  + (27)

rfl+1 rt+l

with n = Nc+ q

1 '2 3R 3A 6 8 9R 3B
The coefficients P. , P e Pm' Pt , P Pt P& ad P

are generated by computer and stored.

Now, we put together the final integrals:

1 1 aK t= A 12: Yd (q) PN dr e-Yr r Nc+q+m+l

2 2 b
K = A Y!q) Pt f dr e-Yr r Ne+ q- ttq ta

3 3R 3A
Kt Kt + Kt

3R x'-I3R bK A =3R(Yd dJq) P fb dr e-(ca+o+y)r rNc+q+m-1

3A 3A
K£ = AtZ yd (q) P f dr e-Or rNc+q-Iq a

12



4 2
K= At  Zd (q) P t dr e(7+ 5)r r Nc - 1+q-2t

5 5R 5A
Kt = Kt + Kt

5R 3R
Kz = At Z I Zd (q) Pt fb dr e'( a+P+y + B)r rN c ' l + q + m -2 t

q m t b

5A 3A
K= AI Zd (q) P fm dr e-(7+ ) rNc-l+q- 2 tq t

6 6
K£ = A Z I Yb Q) P a dr e- ar rNa+J+m+l

Zjm t tio

7 6 b
KI = A Z Z Zb () P fa dr e-(c+D)r rNa+J+m- t

j m 1 tm

8 8
K = A I Zb Q) P fJ dr e-(ac+o)r rNa-+j-2tt t j t t b

9 9R 9B
K t = K + Kt t

9R 9R
Kt = At F Zb () p f dr e-(a++ y+ 8)r rNa-l+j+m-2Lj M t tm b

9B 3B
Kt = A Zb (j) pZ f. dr e-(c+o)r rNa-1+j-2t (28)

In the summations, the maximum power of r used was 36.

As an example of the three-center exchange integral we take the case of a =

/2, b = 2,0 = 450, and a=8=y = = 1.2. Table I shows the results of our

13



computations. The last columns give the sum of the preceding columns. We

multiply each last column value by P (cos 0) and add. Hence, K = .1099365 and K

= .0845324, and therefore K = .1944689. (The Central Processing Unit time was 93 s

on a Cyber 760). This value agrees with the six figures given by Trivedi and

Steinborn1 o , and Graovac, et al. 11

We may readily specify the three-center exchange integral to the two-center

exchange integral. As an example we set a = b =2, 0 = 00 , and keep all screening

constants the same. Because of symmetry considerations we may write K = 2K,

and the problem reduces to integration over three regions. The value computed

was K = .1433972 (17 s CPU time). This compares well with the exact value of K =

.1433970 obtained by use of Sugiura's formula. 12 This kind of comparison is an

excellent check on our method.

Let us consider two additional examples. For a two-center exchange

integral take Xa (1) to be a 2s orbital with Xb (1), X, (2), and Xd(2) to be ls orbitals,

with all screening constants equal to 1.0. Let the displacement distance be a = 1.0.

Then we get K = 0.35678082, which agrees with the seven digits given by Maslen

and Trefry. 13 If we interchange Xa (1) and Xb (1), we get the same answer, which

demonstrates the consistency of our method. In the second example, we study a

three-center exchange integral with all 2s orbitals, a =V2, b = 2.0, 6 = 600, a = 0.5,

13= 1.0, y = 1.2, and 8 = 1.5. We find that K = 0.13960560.

IV. Three-Center Coulomb Integral

Coulomb integrals are simpler to formulate than the corresponding

exchange integrals. This is because we may merge the two orbitals of the same

electron and place it at the origin. Then, the potential due to these orbitals can be

14



immediately written as an analytical expression. 14 .15

For the three-center Coulomb integral we use the same geometry as before

(Fig. 1), but now we interchange the positions of orbitals Xb (1) and Xc (2). In this

case, we may consider the product of the two orbitals at the origin as a single

charge distribution. Thus

Xa(1) Xb(1) = Aa Ab rlNa+Nb 2 e-(a +)rl YO(e 1,(p)/(41) 2  (29)

The true potential is

V (r 2) = Idv I Xa (1) Xb (1) / r12 (30)

The integration is easily carried out getting

V (r2) = -8 (a p)312 I.. - Iea + P)r 2  (31)
(a+B)r 2/r rI r2

We write each term as a separate potential

1
V(r 2 ) = (32)

r2

V (r 2) = e,-(a + P)r 2  (33)
r2

3
V (r2 ) = - c + e -(cc + P)r 2  (34)

2

15



The definition of the Coulomb integral is

J - If dvdv, X*(1) Xb (1) r X*(2) Xd(2). (35)a12 2)X

In our case

J = f dv2 V (r2) Xc (2) Xd (2). (36)

Substituting in the appropriate a-functions and taking orthogonality into

account we get

J = I Az Jt Pt (coso)

with

J1= f r 2 dv V (r) ai (r) ad (r). (37)

This time,

A = 32 1

(o+8), 2t+1

Now, we simply write

1 2 3
Jt= Jr2 dr al ad (V + V + V (38)

16



Taking into account the range of validity of each a-function, we write

I II III
Jt= J +  Jt + J

with

I 1 2 3aJ r 2 dr ac ad {V + V + V
0 t t

II b 1 2 3
J 'r 2 dr ac ad {V + V + V}

a t t

III 1 2 3
J = f br2 dr ac ad {V + V + V (39)

i

Furthermore, let each region I, II, and III define three J values corresponding

to the three potentials.

9 i
Thus, finally Jt = Z Jr. (40)

i=1

Table II tabulates Jt for 13 harmonics. The last column corresponds to Jt

Multiplying the last column by Pt(cos0) and adding we get J = .343848 (CPU time

is 164 s).

We may check our procedures by setting a = b = 2 and 0 - 00. This gives the

result J = .454950. Closed formulas are available 16 for two-center Coulomb

integrals. For this example, the formula gives J = .455049.

17



V. Two-Center Coulomb Integral

The two-center coulomb integral forms an exceptionally simple case with

our method. With s-orbitals only one harmonic is needed, namely, £ = 0 . This

comes about if we merge orbitals Xc (2) and Xd (2). Thus,

Xc (2) Xd (2) = (4n)-I /2 Ac Ad e-(7 + 5)R2 yo (E,4) (41)

We consider this charge density as essentially a ls orbital with a screening

constant of y+ 5. We write its a-function as aCD . Hence,

XC (2) Xd (2) = YO A c Ad Z (2 t+ 1) "112 UCD (2) YO (0242) (42)

Substituting this expression into the formula for the Coulomb integral and

invoking orthogonality, only the t = 0 term survives. Thus we get

JMAX

J =A Z  yCD(j) drri+ 2 V+ Ao  ZCD(j) Jf drri + IVe -(  + 5)r
j=0 0 0 j=o o

with

A0 = 32(a3y6) 3 2 /(cc+ 3) 3. (43)

The computed value is J = .455049, the same as the formula value.
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VL Conclusion

All expansion methods necessarily have their limitations; in our case the

number of harmonics required depend upon the magnitude of the product of each

orbital screening constant and the displacement of the orbital from the origin. 17

However, when one relates this basic consideration to realistic physical problems,

the constraint is not as severe as might be supposed. In most of our examples, we

achieved excellent results with use of only 13 harmonics. We note that exchange

integrals become very small and may be discarded when displacement distances

or screening constants become large; also, when the charge overlap between

orbitals is essentially zero its Coulomb interaction may be calculated on the basis

of multipoles. 18

The efficiency of this generalizable method for the evaluation of STO

multicenter molecular integrals may be significantly improved by better

programming, the use of look-up tables, and vector processing.
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b
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Figure 1. Location of orbitals Xa(l), Xb(2), Xc(2), and Xd(2) for the
determination of the three-center exchange integrals.
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